A Chemical Correlation of Octahedral Tris-chelate Compounds

By A. G. BEAUMONT and R. D. GILLARD*

(University of Kent at Canterbury, Canterbury, Kent)

CHEMICAL correlations of optical configuration among octahedral complexes have been achieved previously for (i) a series¹ of bis-chelated compounds of the type [Co en_2XY]ⁿ⁺ where X and Y are monodentate ligands such as isothiocyanate or ammonia, (ii) several binuclear series² which have been related to the corresponding monomeric compounds, and (iii) tris-cysteinatocobaltate(111) and its sulphinate derivative.³ Non-trivial chemical correlations between tris-chelated compounds are rare. We report here the first case in which the size of the ring is altered.

(-)-Salicylatobisethylenediaminecobalt(III) (A) reacts slowly (t_i ca. 12 hr.) with hot nitric acid to give finally oxalatobisethylenediaminecobalt(III) (B) which is optically inactive.⁴ We find, using ¹⁴C, that the carboxyl labelled carbon of A is no longer present in B. Further, the resolved oxalato-complex loses its optical activity readily in the reaction medium ($t_i \simeq 30$ min. at 80°).[†]

However, oxidation with neutral or acid permanganate gives a strongly optically active product, fairly rapidly in very good yield in the cold (*via* several as yet unidentified intermediates). The product B, which has lost the ¹⁴C label, has been identified with an authentic sample [i.r. and analysis (solid) and electronic spectra, o.r.d., and c.d. (solution)]. The properties of A and B are shown in the Figure.

Six-membered chelate rings tend in general to give smaller rotational strengths than five-membered rings,⁵ since A [six-membered ring; $(\epsilon_L - \epsilon_R)_{max} - 0.90$]

FIGURE. The absorption (---) and circular dichrois m (-.) of the cation (-)-[Co en₂ sal]⁺, (A) and the absorption (---) and circular dichroism (...) of the cation (-)-Co en₂ ox]⁺ (B).

must be at least as optically pure as B (five-membered ring; $(\epsilon_{\rm L} \pm \epsilon_{\rm R})_{\rm max} - 2.4$). It seems likely that the conversion of A into B occurs without inversion and that the

† We thank Dr. M. L. Tobe for a suggestion which led to this experiment.

empirical rules⁶ relating the dominant sign of the Cotton effect in the visible region to the absolute configuration of a cobalt(111) complex can be applied to molecules of the type [Co(AB)(CD)(EF)] where AB and CD are four- or five membered bidentate chelate rings, and EF is six-membered.

(Received, February 5th, 1969; Com. 157.)

¹ K. Garbett and R. D. Gillard, Co-ord. Chem. Rev., 1966, 1, 179. ² K. Garbett and R. D. Gillard, J. Chem. Soc. (A), 1968, 1725; S. F. Mason and J. N. Wood, Chem. Comm., 1968, 1512; R. D. Gillard and M. G. Price, *ibid.*, 1969, 67.

- ⁸ R. D. Gillard and R. Maskill, Chem. Comm., 1968, 160.
 ⁴ K. Garbett and R. D. Gillard, J. Chem. Soc. (A), 1968, 979.
 ⁵ R. D. Gillard, J. Inorg. Nuclear Chem., 1964, 26, 657.
 ⁶ R. D. Gillard, Chem. in Britain, 1967, 3, 205.